Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.516
Filtrar
1.
Biochemistry (Mosc) ; 89(Suppl 1): S112-S126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621747

RESUMO

The review considers the problem of hydrogen peroxide decomposition and hydroxyl radical formation in the presence of iron in vivo and in vitro. Analysis of the literature data allows us to conclude that, under physiological conditions, transport of iron, carried out with the help of carrier proteins, minimizes the possibility of appearance of free iron ions in cytoplasm of the cell. Under pathological conditions, when the process of transferring an iron ion from a donor protein to an acceptor protein can be disrupted due to modifications of the carrier proteins, iron ions can enter cytosol. However, at pH values close to neutral, which is typical for cytosol, iron ions are converted into water-insoluble hydroxides. This makes it impossible to decompose hydrogen peroxide according to the mechanism of the classical Fenton reaction. A similar situation is observed in vitro, since buffers with pH close to neutral are used to simulate free radical oxidation. At the same time, iron hydroxides are able to catalyze decomposition of hydrogen peroxide with formation of a hydroxyl radical. Decomposition of hydrogen peroxide with iron hydroxides is called Fenton-like reaction. Studying the features of Fenton-like reaction in biological systems is the subject of future research.


Assuntos
Peróxido de Hidrogênio , Radical Hidroxila , Radical Hidroxila/química , Ferro/química , Hidróxidos , Oxirredução , Proteínas de Transporte
2.
Water Sci Technol ; 89(6): 1526-1538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557716

RESUMO

Water scarcity is a major global challenge that affects both developed and developing countries, with Indonesia serving as a prime example. Indonesia's archipelagic nature, combined with its dense population, exacerbates the severity of water scarcity. The increased population density in these areas raises the demand for water resources, putting a strain on the available supply. The purpose of this research was to create porous mortar filters (PMFs) with different ratios (1:4, 1:5, and 1:6) by incorporating 10, 15, and 20% adsorbent material by weight of fine aggregate. The research was carried out in three stages: determining PMF properties, preparing synthetic wastewater, and assessing treatment effectiveness. Various PMF compositions consistently achieved notable success, with reductions in total dissolved solids and turbidity exceeding 25 and 75%, respectively. The PMF performed admirably in eliminating bacterial concentrations, achieving a 100% removal rate, and was critical in efficiently reducing metals, with compositions achieving over 80% reduction for manganese (Mn) and 38% reduction for iron (Fe). PMF emerges as a practical solution as a cost-effective and simple water treatment technology, particularly suitable for areas with limited technological infrastructure and resources, providing accessible water treatment for communities facing challenges in this regard.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Porosidade , Águas Residuárias , Ferro/química , Manganês
3.
Environ Sci Technol ; 58(14): 6204-6214, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557085

RESUMO

Marine permeable sediments are important sites for organic matter turnover in the coastal ocean. However, little is known about their role in trapping dissolved organic matter (DOM). Here, we examined DOM abundance and molecular compositions (9804 formulas identified) in subtidal permeable sediments along a near- to offshore gradient in the German North Sea. With the salinity increasing from 30.1 to 34.6 PSU, the DOM composition in bottom water shifts from relatively higher abundances of aromatic compounds to more highly unsaturated compounds. In the bulk sediment, DOM leached by ultrapure water (UPW) from the solid phase is 54 ± 20 times more abundant than DOM in porewater, with higher H/C ratios and a more terrigenous signature. With 0.5 M HCl, the amount of leached DOM (enriched in aromatic and oxygen-rich compounds) is doubled compared to UPW, mainly due to the dissolution of poorly crystalline Fe phases (e.g., ferrihydrite and Fe monosulfides). This suggests that poorly crystalline Fe phases promote DOM retention in permeable sediments, preferentially terrigenous, and aromatic fractions. Given the intense filtration of seawater through the permeable sediments, we posit that Fe can serve as an important intermediate storage for terrigenous organic matter and potentially accelerate organic matter burial in the coastal ocean.


Assuntos
Matéria Orgânica Dissolvida , Ferro , Ferro/química , Água do Mar/química , Água , Compostos Orgânicos
4.
PeerJ ; 12: e17178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590702

RESUMO

Gregory's diverticulum, a digestive tract structure unique to a derived group of sand dollars (Echinoidea: Scutelliformes), is filled with sand grains obtained from the substrate the animals inhabit. The simple methods of shining a bright light through a specimen or testing response to a magnet can reveal the presence of a mineral-filled diverticulum. Heavy minerals with a specific gravity of >2.9 g/cm3 are selectively concentrated inside the organ, usually at concentrations one order of magnitude, or more, greater than found in the substrate. Analyses of diverticulum content for thirteen species from nine genera, using optical mineralogy, powder X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, as well as micro-computed tomography shows the preference for selection of five major heavy minerals: magnetite (Fe3O4), hematite (Fe2O3), ilmenite (FeTiO3), rutile (TiO2), and zircon (ZrSiO4). Minor amounts of heavy or marginally heavy amphibole, pyroxene and garnet mineral grains may also be incorporated. In general, the animals exhibit a preference for mineral grains with a specific gravity of >4.0 g/cm3, although the choice is opportunistic and the actual mix of mineral species depends on the mineral composition of the substrate. The animals also select for grain size, with mineral grains generally in the range of 50 to 150 µm, and do not appear to alter this preference during ontogeny. A comparison of analytical methods demonstrates that X-ray attenuation measured using micro-computed tomography is a reliable non-destructive method for heavy mineral quantification when supported by associated analyses of mineral grains extracted destructively from specimens or from substrate collected together with the specimens. Commonalities in the electro-chemical surface properties of the ingested minerals suggest that such characteristics play an important role in the selection process.


Assuntos
Titânio , Zircônio , Animais , Titânio/química , Microtomografia por Raio-X , Minerais/análise , Ferro/química , Ouriços-do-Mar
5.
J Inorg Biochem ; 255: 112544, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574491

RESUMO

Resonance Raman (rR) spectroscopy has been applied to study the nature of the iron-oxo (Fe=O) moiety of oxoiron(IV) porphyrin π-cation radical complex (CompI). While the axial ligand effect on the nature of the Fe=O moiety has been studied with rR spectroscopy, the porphyrin ligand effect has not been studied well. Here, we investigated the porphyrin ligand effect on the Fe=O moiety with rR spectroscopy. The porphyrin ligand effect was modulated by the electron-withdrawing effect of the porphyrin substituent at the meso-position. This study shows that the frequency of the Fe=O stretching band, ν(Fe=O), hardly change even when the electron-withdrawing effect of the porphyrin substituent changes. This result is further supported by theoretical calculation of CompI. The natural atomic charge analysis reveals that the oxo and axial ligands work to buffer the electron-withdrawing effect of the porphyrin substituent. The electron-withdrawing porphyrin substituent shifts an electron population from the ferryl iron to the porphyrin, but the decreased electron population on the ferryl iron is compensated by the shift of the electron population from the oxo ligand and the axial ligand. The shift of the electron population makes the Fe-axial ligand bond length short, but the Fe=O bond length unchanged, resulting in the invariable ν(Fe=O) frequency.


Assuntos
Porfirinas , Ligantes , Porfirinas/química , Ferro/química , Cátions
6.
J Environ Sci (China) ; 142: 115-128, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527878

RESUMO

Microscale zero-valent iron (mZVI) has shown great potential for groundwater Cr(VI) remediation. However, low Cr(VI) removal capacity caused by passivation restricted the wide use of mZVI. We prepared mZVI/GCS by encapsulating mZVI in a porous glutaraldehyde-crosslinked chitosan matrix, and the formation of the passivation layer was alleviated by reducing the contact between zero-valent iron particles. The average pore diameter of mZVI/GCS was 8.775 nm, which confirmed the mesoporous characteristic of this material. Results of batch experiments demonstrated that mZVI/GCS exhibited high Cr(VI) removal efficiency in a wide range of pH (2-10) and temperature (5-35°C). Common groundwater coexisting ions slightly affected mZVI/GCS. The material showed great reusability, and the average Cr(VI) removal efficiency was 90.41% during eight cycles. In this study, we also conducted kinetics and isotherms analysis. Pseudo-second-order model was the most matched kinetics model. The Cr(VI) adsorption process was fitted by both Langmuir and Freundlich isotherms models, and the maximum Langmuir adsorption capacity of mZVI/GCS reached 243.63 mg/g, which is higher than the adsorption capacities of materials reported in most of the previous studies. Notably, the column capacity for Cr(VI) removal of a mZVI/GCS-packed column was 6.4 times higher than that of a mZVI-packed column in a 50-day experiment. Therefore, mZVI/GCS with a porous structure effectively relieved passivation problems of mZVI and showed practical application prospects as groundwater Cr(VI) remediation material with practical application prospects.


Assuntos
Quitosana , Água Subterrânea , Poluentes Químicos da Água , Ferro/química , Glutaral , Longevidade , Poluentes Químicos da Água/química , Cromo/análise , Água Subterrânea/química , Adsorção
7.
J Am Chem Soc ; 146(14): 9640-9656, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530124

RESUMO

Structural and spectroscopic investigations of compound II in ascorbate peroxidase (APX) have yielded conflicting conclusions regarding the protonation state of the crucial Fe(IV) intermediate. Neutron diffraction and crystallographic data support an iron(IV)-hydroxo formulation, whereas Mössbauer, X-ray absorption (XAS), and nuclear resonance vibrational spectroscopy (NRVS) studies appear consistent with an iron(IV)-oxo species. Here we examine APX with spectroscopy-oriented QM/MM calculations and extensive exploration of the conformational space for both possible formulations of compound II. We establish that irrespective of variations in the orientation of a vicinal arginine residue and potential reorganization of proximal water molecules and hydrogen bonding, the Fe-O distances for the oxo and hydroxo forms consistently fall within distinct, narrow, and nonoverlapping ranges. The accuracy of geometric parameters is validated by coupled-cluster calculations with the domain-based local pair natural orbital approach, DLPNO-CCSD(T). QM/MM calculations of spectroscopic properties are conducted for all structural variants, encompassing Mössbauer, optical, X-ray absorption, and X-ray emission spectroscopies and NRVS. All spectroscopic observations can be assigned uniquely to an Fe(IV)═O form. A terminal hydroxy group cannot be reconciled with the spectroscopic data. Under no conditions can the Fe(IV)═O distance be sufficiently elongated to approach the crystallographically reported Fe-O distance. The latter is consistent only with a hydroxo species, either Fe(IV) or Fe(III). Our findings strongly support the Fe(IV)═O formulation of APX-II and highlight unresolved discrepancies in the nature of samples used across different experimental studies.


Assuntos
Compostos Férricos , Ferro , Ascorbato Peroxidases , Ferro/química , Análise Espectral , Espectroscopia de Mossbauer
8.
Sci Total Environ ; 926: 172033, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547968

RESUMO

Decabromodiphenyl ether (BDE-209) is a common brominated flame retardant in electronic waste, and nano zero-valent iron (nZVI) is a new material in the field of environmental remediation. Little is known about how BDE-209 and nZVI combined exposure influences soil organisms. During the 28 days study, we determined the effects of single and combined exposures to BDE-209 and nZVI on the oxidative stress and metabolic response of earthworms (Eisenia fetida). On day 7, compared to CK, malondialdehyde (MDA) content increased in most combined exposure groups. To remove MDA and reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities were induced in most combined exposure groups. On day 28, compared to CK, the activities of SOD and CAT were inhibited, while POD activity was significantly induced, indicating that POD plays an important role in scavenging ROS. Combined exposure to BDE-209 and nZVI significantly affected amino acid biosynthesis and metabolism, purine metabolism, and aminoacyl-tRNA biosynthesis pathways, interfered with energy metabolism, and aggravated oxidative stress in earthworms. These findings provide a basis for assessing the ecological impacts of using nZVI to remediate soils contaminated with BDE-209 from electronic waste.


Assuntos
Éteres Difenil Halogenados , Oligoquetos , Poluentes do Solo , Animais , Espécies Reativas de Oxigênio/metabolismo , Oligoquetos/fisiologia , Ferro/química , Estresse Oxidativo , Catalase/metabolismo , Antioxidantes/metabolismo , Solo/química , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Poluentes do Solo/análise
9.
Int J Biol Macromol ; 265(Pt 2): 131111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522700

RESUMO

Iron ions play a crucial role in the environment and the human body. Therefore, developing an effective detection method is crucial. In this paper, we report CNS2, a chitosan-based fluorescent probe utilizing naphthalimide as a fluorophore. CNS2 is designed to "quench" its own yellow fluorescence through the specific binding of compounds containing enol structures to Fe3+. Studying the fluorescence lifetime of CNS2 in the presence or absence of Fe3+ reveals that the quenching mechanism is static. The presence of multiple recognition sites on the chitosan chain bound to Fe3+ gave CNS2 rapid recognition (1 min) and high sensitivity, with a detection limit as low as 0.211 µM. Moreover, the recognition of Fe3+ by CNS2 had a good specificity and was not affected by interferences. More importantly, in this study, CNS2 was successfully utilised to prepare fluorescent composite membranes and to detect Fe3+ in real water samples and a variety of food samples. The results show that the complex sample environment still does not affect the recognition of Fe3+ by CNS2. All the above experiments obtained more satisfactory results, which provide strong support for the detection of Fe3+ by the probe CNS2 in practical applications.


Assuntos
Quitosana , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Água , Quitosana/química , Ferro/química , Fluorescência , Espectrometria de Fluorescência/métodos
10.
Redox Biol ; 71: 103111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521703

RESUMO

Recent research has hypothesized that hydrogen peroxide (H2O2) may have emerged from abiotic geochemical processes during the Archean eon (4.0-2.5 Ga), stimulating the evolution of an enzymatic antioxidant system in early life. This eventually led to the evolution of cyanobacteria, and in turn, the accumulation of oxygen on Earth. In the latest issue of Redox Biology, Koppenol and Sies (vol. 29, no. 103012, 2024) argued against this hypothesis and suggested instead that early organisms would not have been exposed to H2O2 due to its short half-life in the ferruginous oceans of the Archean. We find these arguments to be factually incomplete because they do not consider that freshwater or some coastal marine environments during the Archean could indeed have led to H2O2 generation and accumulation. In these environments, abiotic oxidants could have interacted with early life, thus steering its evolutionary course.


Assuntos
Peróxido de Hidrogênio , Ferro , Ferro/química , Peróxido de Hidrogênio/química , Oxigênio/química , Fotossíntese , Oceanos e Mares , Compostos Ferrosos
11.
Environ Int ; 185: 108550, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452466

RESUMO

Nanoscale zero-valent iron (Fe) is a promising nanomaterial for remediating heavy metal-contaminated soils. Melatonin (MT) is essential to alleviate environmental stress in plants. However, the conjunction effects of Fe and MT (FeMT) on rice Cd, As accumulation and the mechanism of soil chemical and microbial factors interaction are unclear. Here, a pot experiment was conducted to evaluated the effects of the FeMT for rice Cd, As accumulation and underlying mechanisms. The findings showed that FeMT significantly reduced grains Cd by 92%-87% and As by over 90%, whereas improving grains Fe by over 213%. Soil available-Cd and iron plaques-Cd (extracted by dithionite-citrate-bicarbonate solution, DCB-Cd) significantly regulated roots Cd, thus affected Cd transport to grains. Soil pH significantly affected soil As and DCB-As, which further influenced roots As uptake and the transport to shoots and grains. The interactions between the soil bacterial community and soil Fe, available Fe, and DCB-Fe together affected root Fe absorption and transportation in rice. FeMT significantly influenced rhizosphere soil bacterial α- and ß-diversity. Firmicutes as the dominant phylum exhibited a significant positive response to FeMT measure, and acted a key role in reducing soil Cd and As availability mainly by improving iron-manganese plaques. The increase of soil pH caused by FeMT was beneficial only for Actinobacteriota growth, which reduced Cd, As availability probably through complexation and adsorption. FeMT also showed greater potential in reducing human health and ecological risks by rice consumption and straw returning. These results showed the important role of both soil chemical and microbial factors in FeMT-mediated rice Cd, As reduction efficiency. This study opens a novel strategy for safe rice production and improvement of rice iron nutrition level in heavy-metals polluted soil, but also provides new insights into the intricate regulatory relationships among soil biochemistry, toxic elements, microorganism, and plants.


Assuntos
Melatonina , Metais Pesados , Oryza , Poluentes do Solo , Humanos , Ferro/química , Solo/química , Cádmio/análise , Melatonina/farmacologia , Oryza/química , Metais Pesados/análise , Bactérias , Poluentes do Solo/análise
12.
ACS Appl Mater Interfaces ; 16(11): 14296-14307, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452344

RESUMO

Porous iron(III) carboxylate metal-organic frameworks (MIL-100; MIL stands for Material of Institute Lavoisier) of submicronic size (nanoMOFs) have attracted a growing interest in the field of drug delivery due to their high drug payloads, excellent entrapment efficiencies, biodegradable character, and poor toxicity. However, only a few studies have dealt with the nanoMOF degradation mechanism, which is key to their biological applications. Complementary methods have been used here to investigate the degradation mechanism of Fe-based nanoMOFs under neutral or acidic conditions and in the presence of albumin. High-resolution STEM-HAADF coupled with energy-dispersive X-ray spectroscopy enabled the monitoring of the crystalline organization and elemental distribution during degradation. NanoMOFs were also deposited onto silicon substrates by dip-coating, forming stable thin films of high optical quality. The mean film thickness and structural changes were further monitored by IR ellipsometry, approaching the "sink conditions" occurring in vivo. This approach is essential for the successful design of biocompatible nano-vectors under extreme diluted conditions. It was revealed that while the presence of a protein coating layer did not impede the degradation process, the pH of the medium in contact with the nanoMOFs played a major role. The degradation of nanoMOFs occurred to a larger extent under neutral conditions, rapidly and homogeneously within the crystalline matrices, and was associated with the departure of their constitutive organic ligand. Remarkably, the nanoMOFs' particles maintained their global morphology during degradation.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Estruturas Metalorgânicas/química , Compostos Férricos/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Ferro/química
13.
Environ Pollut ; 346: 123641, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428791

RESUMO

The excessive accumulation of hexavalent chromium (Cr(VI)) in the environment poses a risk to environment and human health. In the present study, a potassium bicarbonate-modified pyrite/porous biochar composite (PKBC) was prepared in a one-step process and applied for the efficient removal of Cr(VI) in wastewater. The results showed that PKBC can significantly remove Cr(VI) within 4 h over a wide range of pH (2-11). Meanwhile, the PKBC demonstrated remarkable resistance towards interference from complex ions. The addition of potassium bicarbonate increased the pore structure of the material and promoted the release of Fe2+. The reduction of Cr(VI) in aqueous solution was primarily attributed to the Fe(II)/Fe(III) redox cycle. The sulphur species achieved Fe(II)/Fe(III) cycle through electron transfer with iron, thus ensuring the continuous reduction capacity of PKBC. Besides, the removal rate was also maintained at more than 85% in the actual water samples treatment process. This work provides a new way to remove hexavalent chromium from wastewater and demonstrates the potential critical role of potassium bicarbonate and sulphur.


Assuntos
Bicarbonatos , Compostos de Potássio , Sulfetos , Águas Residuárias , Poluentes Químicos da Água , Humanos , Compostos Férricos , Potássio , Porosidade , Ferro/química , Carvão Vegetal/química , Cromo/química , Compostos Ferrosos , Poluentes Químicos da Água/análise , Adsorção
14.
Glob Chang Biol ; 30(3): e17239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38500015

RESUMO

Dissimilatory iron reduction (DIR) can drive the release of organic carbon (OC) as carbon dioxide (CO2 ) by mediating electron transfer between organic compounds and microbes. However, DIR is also crucial for carbon sequestration, which can affect inorganic-carbon redistribution via iron abiotic-phase transformation. The formation conditions of modern carbonate-bearing iron minerals (ICFe ) and their potential as a CO2 sink are still unclear. A natural environment with modern ICFe , such as karst lake sediment, could be a good analog to explore the regulation of microbial iron reduction and sequential mineral formation. We find that high porosity is conducive to electron transport and dissimilatory iron-reducing bacteria activity, which can increase the iron reduction rate. The iron-rich environment with high calcium and OC can form a large sediment pore structure to support rapid DIR, which is conducive to the formation and growth of ICFe . Our results further demonstrate that the minimum DIR threshold suitable for ICFe formation is 6.65 µmol g-1 dw day-1 . DIR is the dominant pathway (average 66.93%) of organic anaerobic mineralization, and the abiotic-phase transformation of Fe2+ reduces CO2 emissions by ~41.79%. Our findings indicate that as part of the carbon cycle, DIR not only drives mineralization reactions but also traps carbon, increasing the stability of carbon sinks. Considering the wide geographic distribution of DIR and ICFe , our findings suggest that the "iron mesh" effect may become an increasingly important vector of carbon sequestration.


Assuntos
Sequestro de Carbono , Ferro , Ferro/química , Ferro/metabolismo , Dióxido de Carbono , Oxirredução , Ciclo do Carbono , Compostos Férricos/metabolismo
15.
J Environ Manage ; 355: 120488, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457892

RESUMO

Sulfidation enhances the reactivity of zero-valent iron (ZVI) for Cr(VI) removal from groundwater. Current sulfidation methods mainly focus on chemical and mechanical sulfidation, and there has been little research on biosulfidation using sulfate-reducing bacteria (SRB) and its performance in Cr(VI) removal. Herein, the ability of the SRB-biosulfidated ZVI (SRB-ZVI) system was evaluated and compared with that of the Na2S-sulfidated ZVI system. The SRB-ZVI system forms a thicker and more porous FeSx layer than the Na2S-sulfidated ZVI system, resulting in more sufficient sulfidation of ZVI and a 2.5-times higher Cr(VI) removal rate than that of the Na2S-sulfidated ZVI system. The biosulfidated-ZVI granules and FeSx suspension are the major components of the SRB-ZVI system. The SRB-ZVI system exhibits a long-lasting (11 cycles) Cr(VI) removal performance owing to the regeneration of FeSx. However, the Na2S-sulfidated ZVI system can perform only two Cr(VI) removal cycles. SRB attached to biosulfidated-ZVI can survive in the presence of Cr(VI) because of the protection of the biogenic porous structure, whereas SRB in the suspension is inhibited. After Cr(VI) removal, SRB repopulates in the suspension from biosulfidated-ZVI and produce FeSx, thus providing conditions for subsequent Cr(VI) removal cycles. Overall, the synergistic effect of SRB and ZVI provides a more powerful and environmentally friendly sulfidation method, which has more advantageous for Cr(VI) removal than those of chemical sulfidation. This study provides a visionary in situ remediation strategy for groundwater contamination using ZVI-based technologies.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ferro/química , Cromo/química , Bactérias , Sulfatos , Poluentes Químicos da Água/química
16.
Chemosphere ; 353: 141581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430936

RESUMO

In recent times, organic compounds have been extensively utilized to mitigate the limitations associated with Fe(Ⅲ) reduction and the narrow pH range in Fenton and Fenton-like processes, which have garnered considerable attention in relevant studies. This review presents the latest advancements in the comprehensive analysis and applications of organic agents as assistant/cocatalysts during Fenton/Fenton-like reactions for water pollution control. The primary focus includes the following: Firstly, the mechanism of organic co-catalytic reactions is introduced, encompassing both complexation and reduction aspects. Secondly, these organic compounds are classified into distinct categories based on their functional group structures and applications, namely polycarboxylates, aminopolycarboxylic acids, quinones, phenolic acids, humic substances, and sulfhydryl compounds, and their co-catalytic functions and mechanisms of each category are discussed in meticulous detail. Thirdly, a comprehensive comparison is conducted among various types of organic cocatalysts, considering their relative merits, cost implications, toxicity, and other pertinent factors. Finally, the review concludes by addressing the universal challenges and development prospects associated with organic co-catalytic systems. The overarching objective of this review is to provide insights into potential avenues for the future advancement of organic co-catalytic Fenton/Fenton-like reactions in the context of water purification.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Peróxido de Hidrogênio/química , Oxirredução , Poluentes Químicos da Água/análise , Compostos Orgânicos , Poluição da Água
17.
Sci Total Environ ; 923: 171422, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432365

RESUMO

Throughout the entire process of sludge treatment and disposal, it is crucial to explore stable and efficient techniques to improve sludge dewaterability, which can facilitate subsequent resource utilization and space and cost savings. Traditional Fenton oxidation has been widely researched to enhance the performance of sludge dewaterability, which was limited by the additional energy input and the instabilities of Fe2+ and H2O2. To reduce the consumption of energy and chemicals and further break the rate-limiting step of the iron cycle, a novel and feasible method that constructed microbial fuel cell powered electro-Fenton systems (MFCⓅEFs) with ferrite and biochar electrode (MgFe2O4@BC/CF) was successfully demonstrated. The MFCⓅEFs with MgFe2O4@BC/CF electrode achieved specific resistance filtration and sludge cake water content of 2.52 × 1012 m/kg and 66.54 %. Cellular structure and extracellular polymeric substances (EPS) were disrupted, releasing partially bound water and destroying hydrophilic structures to facilitate sludge flocs aggregation, which was attributed to the oxidation of hydroxyl radicals. The consistent electron supply supplied by MFCⓅEFs and catalytically active sites on the surface of the multifunctional functional group electrode was responsible for producing more hydroxyl radicals and possessing a better oxidizing ability. The study provided an innovative process for sludge dewaterability improvement with high efficiency and low energy consumption, which presented new insights into the green treatment of sludge.


Assuntos
Fontes de Energia Bioelétrica , Esgotos , Esgotos/química , Peróxido de Hidrogênio/química , Ferro/química , Água/química , Oxirredução , Radical Hidroxila , Eliminação de Resíduos Líquidos/métodos
18.
Langmuir ; 40(12): 6172-6186, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38467540

RESUMO

Conformational changes play a seminal role in modulating the activity of proteins. This concept becomes all the more relevant in the context of metalloproteins, owing to the formation of specific conformation(s) induced by internal perturbations (like a change in pH, ligand binding, or receptor binding), which may carry out the binding and release of the metal ion/ions from the metal binding center of the protein. Herein, we investigated the conformational changes of an iron-binding protein, monoferric human serum transferrin (Fe-hTF), using several spectroscopic approaches. We could reversibly tune the cetyltrimethylammonium bromide (CTAB)-induced conformation of the protein, exploiting the concept of mixed micelles formed by three sequestrating agents: (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) hydrate (CHAPS) and two bile salts, namely, sodium cholate (NaC) and sodium deoxycholate (NaDC). The formation of mixed micelles between CTAB and these reagents (CHAPS/NaC/NaDC) results in the sequestration of CTAB molecules from the protein environment and aids the protein in reattaining its native-like structure. However, the guanidinium hydrochloride-induced denatured Fe-hTF did not acquire its native-like structure using these sequestrating agents, which substantiates the exclusive role of mixed micelles in the present study. Apart from this, we found that the conformation of transferrin (adopted in the presence of CTAB) displays pronounced esterase-like activity toward the para-nitrophenyl acetate (PNPA) substrate as compared to native transferrin. We also outlined the impact of the iron center and amino acids surrounding the iron center on the effective catalytic activity in the CTAB medium. We estimated ∼3 times higher specific catalytic efficiency for the iron-depleted Apo-hTF compared to the fully iron-saturated Fe2-hTF in the presence of CTAB.


Assuntos
Ferro , Micelas , Humanos , Ferro/química , Cetrimônio , Transferrina/química , Ligação Proteica
19.
Environ Sci Pollut Res Int ; 31(17): 26099-26111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492143

RESUMO

Fe-enriched biochar has proven to be effective in reducing Cd uptake in rice plants by enhancing iron plaque formation. However, the effect of Fe on biochar, especially the biochar with high S content, for Cd immobilization in rice rhizosphere was not fully understood. To obtain eco-friendly Fe-loaded biochar at a low cost, garlic straw, bean straw, and rape straw were chosen as the feedstocks for Fe-enhanced biochar production by co-pyrolysis with Fe2O3. The resulting biochars and Fe-loaded biochars were GBC, BBC, BRE, GBC-Fe, BBC-Fe, and BRE-Fe, respectively. XRD and FTIR analyses showed that Fe was successfully loaded onto the biochar. The pristine and Fe-containing biochars were applied at rates of 0% (BC0) and 0.1% in pot experiments. Results suggested that BBC-Fe caused the highest reduction in Cd content of rice grain, and the reductions were 67.9% and 31.4%, compared with BC0 and BBC, respectively. Compared to BBC, BBC-Fe effectively reduced Cd uptake in rice roots by 47.5%. The exchangeable and acid-soluble fraction of Cd (F1-Cd) in soil with BBC-Fe treatment was 37.6% and 63.7% lower than that of BC0 and BBC, respectively. Compared to BC0, soil pH was increased by 0.53 units with BBC-Fe treatment. BBC-Fe significantly increased Fe oxides (free Fe oxides, amorphous Fe oxides, and complex Fe oxides) content in the soil as well. DGT study demonstrated that BBC-Fe could enhance the mobility of sulfate in the rhizosphere, which might be beneficial for Cd fixation in the rhizosphere. Moreover, BBC-Fe increased the relative abundance of Bacteroidota, Firmicutes, and Clostridia, which might be beneficial for Cd immobilization in the rhizosphere. This work highlights the synergistic effect of loaded Fe and biochar on Cd immobilization by enhancing Cd deposited with Fe oxides.


Assuntos
Oryza , Poluentes do Solo , Ferro/química , Cádmio/análise , Oryza/química , Óxidos , Rizosfera , Carvão Vegetal/química , Solo/química , Raízes de Plantas/química , Poluentes do Solo/análise
20.
J Inorg Biochem ; 255: 112540, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552361

RESUMO

N-(3-(dimethylamino)propyl-4-(8-hydroxyquinolin-6-yl)benzamide (ML324, HL) is a potent inhibitor of the iron-containing histone demethylase KDM4, a recognized potential target of cancer therapeutics. Herein, we report the proton dissociation and complex formation processes of ML324 with essential metal ions such as Fe(II), Fe(III), Cu(II) and Zn(II) using UV-visible, fluorescence, electron paramagnetic resonance and 1H NMR spectroscopic methods. The electrochemical behaviour of the copper and iron complexes was characterized by cyclic voltammetry and spectroelectrochemistry. The solid phase structure of ML324 analysed by X-ray crystallography is also provided. Based on the solution equilibrium data, ML324 is present in solution in H2L+ form with a protonated dimethylammonium moiety at pH 7.4, and this (N,O) donor bearing ligand forms mono and bis complexes with all the studied metal ions and the tris-ligand species is also observed with Fe(III). At pH 7.4 the metal binding ability of ML324 follows the order: Fe(II) < Zn(II) < Cu(II) < Fe(III). Complexation with iron resulted in a negative redox potential (E'1/2 = -145 mV vs. NHE), further suggesting that the ligand has a preference for Fe(III) over Fe(II). ML324 was tested for its anticancer activity in chemosensitive and resistant human cancer cells overexpressing the efflux pump P-glycoprotein. ML324 exerted similar activity in all tested cells (IC50 = 1.9-3.6 µM). Co-incubation and complexation of the compound with Cu(II) and Zn(II) had no impact on the cytotoxicity of ML324, whereas Fe(III) decreased the toxicity in a concentration-dependent manner, and this effect was more pronounced in the multidrug resistant cells.


Assuntos
Cobre , Compostos Férricos , Humanos , Cobre/química , Compostos Férricos/química , Ligantes , Metais/química , Ferro/química , Íons , Prótons , Compostos Ferrosos , Benzamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...